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ABSTRACT

A Bluebell nozzle design concept is proposed for

jet noise reduction with minimal thrust loss or even

thrust augmentation. A "Bluebell nozzle" [1] has a si-

nusoidal lip line edge (chevrons) and a sinusoidal cross

section shape with linear amplitude increasing down-

stream in the divergent nozzle part (corrugations). The

experimental tests of several Bluebell nozzle designs

have shown noise reduction relative to a convergent-

divergent round nozzle with design exhaust Mach num-

ber Me = 1.5. The best design provides an acous-
tic benefit near 4dB with about lY. thrust augmenta-

tion. For subsonic flow (Me = 0.6) the tests indicated

that the present method for design of Bluebell nozzles

gives less acoustic benefit and in most cases jet noise
increased.

The proposed designs incorporate analytical the-

ory and 2D and 3D numerical simulations. Full Navier-
Stokes and Euler solvers were utilized. Boundary layer

effects were used. Several different designs were ac-

counted for in the Euler applications.

INTRODUCTION

Successful design of a nozzle system for supersonic
commercial aircraft involves meeting both environmen-

tal and economic metrics. For nozzles, the environmen-

tal metric is noise, as expressed in the FAR 36 Stage III

regulations. Economic metrics are usually associated
with both take-off and cruise aeroperformance, weight,

mechanical complexity, and structural reliability. These

very involved issues are beyond the scope of this pa-

per, but there exist fundamental considerations involv-

ing implementation of both metrics that are the subject

of this paper.
Several years ago it became apparent that a pro-

gram was required that placed more emphasis on sci-

entific methods for the design of nozzles for supersonic

commercial applications. Current methods heavily rely
on state-of-the-art empirical methods that are supported

by massive data sets from prior nozzle testing. The pro-

cess is both cumbersome and expensive. Examples of
this can be found in a review article by Seiner and Kre-

jsa [2]. The most successful nozzle designs are based
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on nozzle geometry that controls the strength of shock

waves, that can rapidly mix high and low speed streams

efficiently, and produce noise spectrally outside the range

of the Noy weighting. One discovers very quickly, how-
ever, that real solutions can only be achieved with a

nozzle concept that is still effective at reducing noise

at low jet exhaust velocities, where trades with noz-

zle performance are historically disappointing to date.

Subsonic jet noise reduction represents a fine example of

this point, where noise reduction is achieved primarily

through increase of engine by-pass ratio which leads to
low mixed flow velocities. For supersonic aircraft, it is

unknown if an economic solution exists for high by-pass

ratio engines.

One simple, yet realistic, question to pose is what

technology exists that can optimize both the aeroacous-

tic suppression characteristics and suppressed mode per-

formance of any given nozzle design. One would, in

particular, like to know this for nozzles targeted to op-
erate with low jet exhaust velocities. One cannot, of

course, directly answer this question. We can, how-

ever, outline aspects of this technology. For example,

in the lobed mixer of Presz [3], counter-rotating axial
vorticity generated by mixer lobes is used to mix high

speed engine primary core and fan stream flow with

entrained lower speed secondary flow from an ejector

inlet. The enhanced mixing is used to both increase the
level of secondary flow entrainment and mix high and

low stream flow to achieve lower speed uniform ejec-

tor exit velocity that has an acceptable level of exter-

nal jet noise. The current state-of-the-art cannot ade-

quately relate the design of lobe geometry to prediction

of circulation strength of counter-rotating vorticity nor
can it determine the circulation strength required to

achieve full mixing in the shortest possible ejector duct.

Additionally, both aeroperformance computations and

nozzle internal noise computations cannot be treated

with sufficient accuracy to optimize the design. Simi-
lar observations of nozzle suppression effectiveness can

be made for other nozzle concepts, like those previously

discussed in reference [2].

The approach described in the present paper at-

tempts to develop a process involving optimal design of

noise suppression technology for both subsonic and su-

personic applications. As such, it is not necessary that



weevenconsidernozzlegeometrythatmeetsanypar-
ticularinternationalnoiseregulationwhenprojectedto
productscale.It issufficientthat thenozzlegeometry
selectedcontainsoneor severalconceptsthat achieve
somelevelof noisereduction.Thelongtermobjective
of theresearchis to explainobservednoisereduction
fromalterationoftheturbulentsourcefunctionandre-
latethis to thenozzlegeometryfor optimization.To-
wardthispurpose,wehaveselecteda simpleaxisym-
metricnozzlegeometry(seeFigure1),whichwedenote
asaBluebellnozzledueto theobservedpetalshapesof
thenozzleplumegeneratedby thisnozzle.TheBlue-
bellnozzleutilizestwoconceptsthathavebeenusedin
thepastto suppressnoise.Theseconceptsinvolvethe
useofchevronsto enhancethenozzleexitperimeterto
increasetheareaformixingandinternalcorrugations
to generatecounter-rotatingaxialvorticityto enhance
mixingof highspeedprimaryflowwith lowspeedsec-
odaryflow.Thepresentresearchdoesnotyetinclude
anejector.

SeveralBluebellnozzleshavebeenconstructedwith
selectvariationsofthechevronandcorrugationgeome-
try. All of theseweredesignedasconvergent-divergent
nozzlesfor anexit Machnumberof 1.5. In this pa-
perpredictionsofthrustandmeasurementofthenoise
aremadetoenableoptimizationofthenozzlegeometry.
Theintermediatesteps,ofeithernumericalsimulation
ormeasurementof theturbulencewithconsequentpre-
dictionofthenoise,remainsadeficiencyof thepresent
paper,butisbeingaddressedin futurework.Thethrust
calculationswereperformedin both2Dand3Dusing
theKrayko-Godunovfirst ordernumericalscheme(K-
G-code)with andwithoutboundarylayercorrections.
In selectcasesa full Navier-Stokescodewith k-¢tur-
bulencemodel,theCRAFTcode,wasalsoappliedto
evaluateperformancebasedcalculationswhenabound-
ary layercorrectionwasappliedto an Euleranalysis
(K-G-code).Acousticmeasurementswereacquiredon
baselinereferencenozzlesandall Bluebellnozzles.The
results,aspresentedbelow,demonstratethatit ispos-
sibleto achievealevelofoptimalnozzledesignthrough
considerationofbothperformanceandnoisereduction.

A BLUEBELL NOZZLE.

1. NOZZLE GEOMETRY.

TheproposedBluebellnozzlecanbeconstuctedon
thebaseof anyplainnozzle:axisymmetricroundcon-
ical, elliptical,triangular,rectangular,2D-CDplane.
Letusconsidertheaxisymmetricbaselinenozzlecon-
tour,whichisdescribedbythefunctionR = Ro(X) in

a meridional plane _ =const. For the Bluebell nozzle

the function Rn(x) describes the nozzle geometry. The

convergent part is represented by a cubic parabola, and

the divergent part is calculated using the method of

characteristics (MOC). Figure 1 shows a representa-
tive example of Bluebell nozzle surface geometry. The

x axis coincides with the nozzle axis of symmetry.

A Bluebell nozzle has a sinusoidal lip line edge,
i.e. the nozzle edge distance from the nozzle throat,

x = xe, that changes sinusoidaily vs azimuth angle _,
with variation in amplitude e. The cross sections ,)f

the nozzle divergent part also are limited by sinusoid _l

curves vs angle _p, so that the variation amplitude :n
surface r(x, _o), increases along a nozzle centerline from

zero at the cross section x = x0 downstream a thro;tt

to the maximum value at the exit 6 = g0(x - x0). Tie
cross section, Xo, is chosen to have an axial flow velocity

slightly exceeding the local sound velocity (M,=I.(1

to 1.03, for details see below the next part). Finallv,
the lateral surface equation of a Bluebell nozzle can I:e
written as:

0 < x < xe(_), (1.1,)

r(x,_) = R,_(x)[1W Scos(n¢_)], (1.1,)

x_(_) = x°[1 + e cos(np_)], (1.1,)

where np, nc are variation frequency of longitudinal lip

line change and cross section correspondingly. These
values are assumed to be even numbers. For simpli-

fication of description, these variations are denoted as

"chevrons" (or "petals") and "corrugations".

We require the same mass flow rate for Bluebell an:l
baseline nozzles in each cross section. Thus at each noz-

zle cross section, Bluebell nozzles have the same cross

section area, Sn(x), as the reference baseline nozzh_,
So(x). From this equality in cross section area, the co-

ordinates R,_(x) are derived from equation 1. la throug a

1.1c. Bluebell nozzle cross section area Sn(x) is calcu-

lated by the simple formula and function Rn(x) expli(-
itly expressed by baseline radius Ro(x):

1 f2_ _52
S,_(x) = -2Jo r2(x' _,)d_ = rR_(x)(1 + _-), (1.2a)

R,_(_/= Ro(_,// + 7), (1.2bt

Here it is assumed that Ro(x) = Ro(x °) for x k x_,

o is a baseline round nozzle edge.where x > x,

A divergent part lateral surface area and a lip line
length in general can only be calculated numerically for

the table data Ro(x). For some particular cases thes_

values can be defined analytically. For example, ali)

line length of a Bluebell nozzle without petals (¢ = 0)

is expressed by elliptical functions and, additionally, if
it is assumed that 6 = 1, the appropriate integral is

defined by the elementary functions:

Ln = f(_)d_ = 2 + n n_v/-_VZ--i-1(ln(n + _ - 1),



f(_) : _/r2(x,:) + r'2(x,:), x : x: (1.3)

A lateral surface area Sn can be defined analytically for

conical nozzles with divergent angle a and we have:

s,,= (1.4)
cosaJ0 J_.

where r(x, _) is given by (1.1) and R(x) = 1+tan a.(x-

x.). The integral (1.4) can be expressed by elementary
functions. We write this formula for a nozzle with petals

without corrugations (5o = 0):

o 1
S,_= cosTrX_(_(2 + xo tan _ + _ tan o_xoe2 ) (1.5)

Note that the cross section "equivalent" radius of a

Bluebell nozzle R,(x) is independent of frequency no,

the lip line length increases with both np and no, as well
as the lateral surface area. For small values of c and 6,
this increase is small.

Some results of numerical integration of (1.1), (1.3)

and (1.4) for Bluebell nozzles with Me = 1.5 is illus-
trated in Figure 2a and 2b. Apparently, these lip line

length ratios,L,/Lo, are more dependent on 6 than lat-
eral area ratios. The lateral area ratios are close to one

for small values of 6. This is very important for practi-

cal applications, to minimize wall friction effects.
Another Bluebell nozzle embodiment is based on

the MOC designed round nozzle with extended cylindri-

cal pipe (r = Ro(x °) at x >_ x°). Such design provides
more uniform pressure distribution at the lip line edge

and this reduces the barrel shock intensity in the jet ex-

haust. In particular, a nozzle with petals, just without

corrugations (6o = 0), is a shock free nozzle. In this case

such a design has less thrust than the corresponding

first embodiment. Two embodiments are shown in Fig-

ure 3a and 3b: a)-lst embodiment of 8-petal Bluebell

nozzle, b)-2nd embodiment of 4-petal Bluebell nozzle.

2. THE THEORY, NUMERICAL METHODS.

2.1. The theoretical approach. The general

purpose of the theoretical approach is to define the op-

timum conditions which provide minimum Bluebell noz-

zle thrust loss by comparison with the baseline conver-

gent divergent design, or conical nozzles. To achieve an

optimal nozzle design, the solution would reguire mul-

tiple computations of a 3-D supersonic flow region. For
practical applications, unit Reynolds numbers Re are

very high 106 - 10s. So that the boundary layer at the

wall is turbulent and makes up a small portion (-_ 1-

37,) of the cross section size and even less to some extent
effects the longitudinal nozzle size. For example, in ac-

cordance with [4], the ratio of the local boundary layer
thickness,6*, to the distance, x, along a flat plate is de-

pendent on the local Reynolds number, Re_, as given

by the relationship:

6*Ix = 0.02. Re-_ 1/7 (1.6a)

The local wallskin friction coefficient cI=%/( l_po_booT2)
is given by

c] = 0.0263. Re-_'/7/(1 + k - 1M_o) 5/7-
4

(1.65)

In such a situation it is inefficient to use numerical solu-

tion based on the full unsteady Navier-Stokes equations.

Our approach is based on the "viscous-inviscid interac-

tion" [4]. We used the Euler approximation for defini-
tion of the "external" inviscid flow outside a thin bound-

ary layer whose thickness is defined by equation 1.6a

with friction along the nozzle wall defined by equation

1.6b. The Euler calculations were repeated for each new

nozzle shape (r = R1) after accounting for the boundary

layer thickness (6"), i.e. Rl(x, _) = R(x, _) - 6*(x, _).

The new computed "external" inviscid flow again was

used for definition of a new boundary layer thickness.
In each iteration, of course, the boundary layer is com-

puted at the original nozzle surface r = R(x, _). Usu-

ally, the results were closed after several iterations, be-
tween 3 and 4.

Subsonic and transonic flow numerical simulation

in the convergent nozzle part was conducted in the in-

terval 0 <_ x <_ Xo by an implicit upwind 2nd order

numerical scheme (ENO-version) for solution of the full
unsteady Navier-Stokes equations, as incorporated in

the CRAFT code of CRAFT-Tech (see Dash [5]). This

code was originally developed by Molvik and Merkle [6].

The algorithm's capability, along with several modifica-
tions with different applications, are described in a set

Dash's et al. papers. Thus we omit its description com-

pletely. We modified this code, so that in some time in-

tervals of the Euler stage computation, we could adapt

Spalding's code [7, 8] for boundary layer computation.

With Spalding's code we made a correction of the noz-

zle boundary location and then continued computation

by the CRAFT code. Such procedure is repeated until
two consequent iterations differ less than a given small

value. Note also, that in most of our computations, the

problem is two-dimensional, since we are able to assume

that in this interval the nozzle is axisymmetric. Recall
that the cross section, xo, is chosen to have an axial

flow velocity slightly exceeding the local sound velocity

(M_ = 1.01 - 1.03). Several variants of completely 3D

problems were computed by this method using CRAFT-
Spalding combination code. We used that only for com-

parison and examination of the main results obtained

by 2D and 3D marching schemes. The grid at the Blue-

bell nozzle surface is shown in Figure 1. It is based upon

the cylindrical coordinate system, which transforms to

the normalized ((, r/, _) system, so that in the x and
r directions the computational region becomes a unit

square in (, 7/ variables (0 _< _ _< 1, 0 _< r/_< 1).



2.2. Krayko-Godunov numerical scheme.

Numerical simulation of supersonic flow in the di-

vergent nozzle part and exhaust jet was conducted by

Kryko-Godunov explicit 1st order numerical scheme (K-
G-code) [9, 10].

Consider a cylindrical coordinate system (z, r,_0)
with components of a velocity vector q on these axes of

(u,v,w), and let q be a modulus of a velocity vector q,

p is a pressure, p is a density. All variables are nondi-
mensional. Linear sizes are related to a throat radius

r., velocities-to a sound velocity c. in the nozzle critical

section (throat), density by the critical density p., pres-
sure by p.c_.. The gas is assumed perfect with constant

specific heat eoeficients c, and c_, so that specific heat
ratio k = it- is constant. The Euler equation is written

C_

in the form of the integral conservation laws:

-_x a drdT = [(c - a q_)dr - (b - a ¢r)d_0]+

+fief drd_ (1.7)

a= ( pu p + pu 2 puv puw )

b = ( pv puv p + pv 2 pvw )

re=(pw puw pvw p + pw 2)

f = -P-P-( v uv v 2 - w 2 2uv )
F

(1.7a)

2k p + q2 k + 1 (1.8)
k--:77

where vectors a,b,c and f are the conservation variables

written by the rows instead of by the usual columns; L

is some reserved contour, which limits the area E in an

dn where dn is a projec-arbitrary cross section, q = _--_,
tion of displacement L to an outward normal. Vectors

q and dn are perpendicular to z-axis in each point of a

contour L. They are completely defined by their projec-

tions cr and ¢v to the r and _ axes. The equation (1.8)

is the condition for a total enthalpy conservation ,Ho,

which along with equation (1.7), completely defines the
system.

Some elements of the applied 3D fixed grid are illus-

trated in Figures 4a and 4b. In a plane r,_ the regions

between several boundaries R_(_), RI(_,), ..R(_,)in the
r-direction and between two symmetry planes _ = 0,_v=

7r/nc in _,-direction are split by K radial straight lines

=const and J lines _ =const. The T1lines contain

straight intervals between appropriate splitting points
of neighboring radial lines. A splitting in the _-direction

(by) is chosen uniform, and in r-direction (hr) as a

geometric progression with a denominator that is d+.'-

fined by equality of the neighbor cell sizes at both sides

of each boundary. This provides uniform accuracy h_r

numerical results near boundaries, which can represei_t
shock waves, slip shocks, or usual streamline surface+.

The step size, h_, increases near the axis of symmetry.
The known flow values at cross section, x = zi, will

define those in the following section zi+l=xi +hz. Tv, o

neighbor six-side grid cells are shown in Figure 4b. For

each cell (as control volume) we write the conservation
laws (1.7) using the explicit 1st order finite-differential

scheme, which includes the conservation variable valu_ s
at the lateral cell sides:

Qj-½,k-½ = Qj-½,k-½ -4-ELk_ ½ - Ej_l,k_ ½-

h,
Gj-½,k +Gj-½,k-1 + "_-(Fj_½,k_ ½.4-FJ-½'k-½) (1.¢_)

Q=ah_, E=(AAI-Bh,+CA 2h_ )

G = C h*---he
he ' F = fh, (1.1¢)

Here the subscripted indicies correspond to the knowl

values (in a plane xi) and superscripted indicies to the

determined values (in a plane zi+l). Whole indicies j,

correspond to cell interface, non-whole indecies j- ½,k--
! to a cell center. Value A 1 represents an average incre-2

ment of side radial coordinates (super or under) from

i to i + 1 cross sections, and A2 represents an averag__

inclination of these sides. The vectors are designated b::
big letters A,B,C and they correspond to the similar

small conservative values a,b,c for cell centers of th._

cross sections xi,zi+x. In Figure 4b all cell tops are as-
signed by letters, where even subscript numbers at tb_

cell tops are for the upper cell side; odd subscript num-
bers are for lower cell-side. The stars in the cell center:_

depict points at which flow parameters are known and
determined for each cell.

Big values are used to determine the elementary so-
lutions by considering the similar two-dimensional stea( y

problem of two uniform unlimited interacting super-

sonic flows. Depending on the relational flow direction,

the pressure and density ratio from different location4
and combinations of the shock waves, uniform flow re-

gions, slip shocks and rarefaction waves were obtained.

We can consider such an interaction problem by assum-

ing that flows in the neighboring grid cells are uniform

at each cell interface. There are five main possible mu-
tual locations of the cell interface and similar flow re.

gions ([13]). Determined values correspond to the sim-
ilar solution in one of the regions. These solutions re

quire iterations. Linear (acoustics) approximation (Rie.
mann solver) allows us to avoid these iterations. How

ever, such an approach doesn't provide the necessar)



accuracyof numericalsolution,andin somecasesre-
quiresa lowCourantnumber.Usually,for boundary
cellswehaveto applythenonlinearapproach;espe-
ciallyforlip shocks.Ofcourse,extractionofthebarrel
shockwaves,lip shocks,andbowshocksforflightsim-
ulationalwaysrequireanonlinearapproach.

Weomitall finiterelationshipsof thesesimilarso-
lutions(see[10]fordetails).Noteonlythatforthisex-
plicitschemeastepin thex direction,h_, has satisfied

the stability condition h_=Cu. Hr H¢/( Hr + He), where

Cu is Courant number, Hr=min(H1, H2), H1 is a dis-

tance in x direction, where a corresponding wave formed

by an interaction at the rj+l cell top (M2) reaches the
neighbor cell top rJ (Ma), and H2 is a similar distance

for rj(M1) and rJ+a(M4). Similarly the value H e is
defined.

The algorithm was tested against the exact solution

of the following problems: 1D flow from a point source,

2D Prandtl-Meyer rarefaction flow, a flow around a

wedge and 2D shock wave reflection from a plate. Com-

parison was also made to a similar solution for a flow

around a cone. For each case sensivity to grid variation

was studied and the integral conservation law for flow
in each cross section was examined. The different tests

show that the algorithm achieves high resolution and is

very fast and economical, especially with 2D flow simu-
lation. For example, a computation by 2D "K-G" code
with 100 cells in a cross section leads to an error less

than ._ 0.1Y,. For the jet nozzle flow field and nozzle

plume extending to 50 jet radii, the computation re-

quires only about 60 sec. on an INDIGO III computer
workstation.

The same tests were applied to the 3D flow. Note

that 1D flow from a point source in a cylindrical coor-

dinate system is a 3D problem, if a point source origin
is not located in the x-axis of this system. Of course,

this code required more time for the computation to

reach the given accuracy of less than .-_ 0.1g,. The grid

JxK=60 xl0 provides an accuracy of ._ 0.3 to 0.5_.

for pressure distribution along the nozzle wall. These

estimations are guaranteed for a Bluebell nozzle with

np= nc = 4 and 8, and c _< 0.3, 6o_< 0.2.

An example of such test results is shown in Fig-
ures 5a,5b and 5c. Figure 5a illustrates Math contours

computed by 2D "K-G" code of a supersonic flow with

Moo= 3 into a wedge-shaped inlet with angle c_ = 5 °.

Here only the upper half flow from the symmetry plane
to the wall is shown. The code used 100 cells in each

cross section with uniform step hy. The oblique shock

wave at the wedge repeatedly reflects from the sym-

metry plane and from the wall. The reflected shock
waves are inclined at the angle _,_, the reflection coor-

dinates and all constant flow parameters at the shock

interface are calculated by the exact relationships on

oblique shock waves and by simple geometric relation-

ships. This is reached by solving the implicit equation:

f(_m)/tan_mtana = 1 - f(/3,_) ' f(_3) = (sin2_3 - M -2)

with the help of the Newton iterations relative to the

shock wave angle 3m. Pressure distributions computed

by the exact method and the 2D K-G code are shown

in Figure 5b along the plane of symmetry and in Figure

5c along the wall. The error of the numerical scheme
increases between 0.5 and lg, after 1 to 4 reflections

from both walls. The accuracy of the numerical solution

increases with increasing flow Math number, Moo, or

the wedge angle a.

2.3 The boundary layer Spalding's numeri-

cal method. This algorithm is based on a six-point

2nd order, implicit finite-difference scheme for the 2D

steady compressible boundary layer numerical solution.
This method and algorithm is described by S. Patankar

and D. Spalding in [10, 11]. The energy and momen-
tum equations are cast in terms of the Mises variables

(x, ¢), where ¢ is a streamline function. This SPALD-2
code is very fast and convenient for nozzle-jet numerical

simulations, and for examination of different turbulence

models. We used this code for 2D problems and mod-

ified it for 3D boundary layer problems. The subsonic
and transonic flow is defined by the sequential iterations
with external flow as we described above in item 1.2.1.

In the supersonic region we use this code as a subroutine

in combination with 2D and 3D "K-G" codes. The ap-

propriate iterations were conducted in each cross section
x =const and the defined "equivalent" nozzle bound-

ary. For a supersonic flow into a Bluebell nozzle, where

nc =np = n, there are 2n planes of symmetry. There-
fore it is sufficient to compute only between two planes

in the interval (0 _< 4 _< _r/n). In each of these planes a

boundary layer is two-dimensional, if one ignors second
derivatives in the 4 direction. Assuming that the 3D

boundary layer thickness is di*(x, 4) and the friction at

the wall is r_(x,_), one can be approximate these by
the function

g(x, 4) = 2 cos n4 + 2

where subscript indicies o and K correspond to their val-

ues in 4 = 0 and 4 = _r/n planes of symmetry. In the
above relation g is either 6* or rw. Comparison with the

full NSE simulation results shows that such an approxi-

mation is effective for n > 4, c -< 0.3, 6o < 0.3-0.4, and

when the nozzle is operated nearly fully pressure bal-

anced (i.e. Pe _ Poo) A similar approximation has been

applied earlier for 3D supersonic flows around blunt
bodies.

The turbulent boundary layer theoretical model

[7,8] is based on the Prandtl mixing-length hypothe-
sis, a one-dimensional representative flow near a wall



(Couette-flow) and the van Driest [11] hypothesis, which
introduces an "effective" viscosity near a wall as:

Pelf = P + pK2y2[ 1 - exp{-Yv/-_/(PA+)}]21Ou/OYl

where A+, K are constants, y is the normal direction

to the wall, p is a laminar viscosity, pK2y _lou/Oy] is

a turbulence viscosity, and the latter is "damped" near

the wall in an exponential fashion.

2.4 Thrust calculation. In accordance with tra-

ditional thrust definition, introduce P and the corre-

sponding nondimensional value T as:

P = (peue _ +pc)dE- PooEe, r = -- (1.11)
° poE,

where subscript indices e, ec, o and * are assigned to the

nozzle exit cross section, ambient, total and critical (in

a throat) parameters correspondingly. E, is a throat

area. The integrand expression in (1.11) is called an

impulse function [13]. Such a definition is introduced
for rocket motors, but it doesn't take into account ve-

hicle drag, and assumes the same shape of the external

and internal vehicle surfaces. Therefore it only approx-
imates the real vehicle net thrust. Nevertheless we will

use this definition for an estimation of the nozzle shape
variation influence on the thrust. The ideal thrust of a

nozzle is determined from the quasi-one-dimensional ap-

proximations assuming an isentropic perfect gas. These

are simple formulae, available in many textbooks, for

example, in [13]. Let us define, Tie(k, neo), as the thrust
of the ideal nozzle, and AT/d is the thrust augmenta-

tion from the supersonic (divergent) part of such a noz-
zle. These values are calculated with the base formulae

(4.34), (4.35) in [13] and are completely defined by spe-

cific heat ratio k and pressure ratio NPR = po/po..

We will define the thrust T and its augmentation AT

directly by integration of the impulse function at the in-
let cross section Io, and the difference between pressure

and friction along the nozzle wall. The integral of the

impulse function at the nozzle exit, taking into account

the boundary layer, allows us to estimate the integral

error of the applied numerical scheme. Thus the thrust

for a single design is calculated using the above nondi-
mensional variables as:

Ee B=k( 2 _-_T = B( Io + I1)- pccpo " r2-2' )

where

= [x( )f°fo2 p(1 _M_c]sina)rdxdrd_Io

JO Jro

11 = I(xo) = (p + pu2)rdrd_o

and

AT = T - T. (1.1")

where T. is the thrust of a convergent nozzle part.

2.5 Numerical simulation results. Using the

above approach and numerical schemes, we conducte:l
simulations of the internal flow in the Bluebell nozzle s

and the exhaust jet. These simulations included a wide

diversity of nozzle geometries, in particular, variation

of the petal and corrugation coefficients c, 6o, their fr,.-

quencies np and no, exit Mach numbers Me, and base-

line nozzle variation. (i.e. conical and optimal axisyr_-

metric nozzles). All nozzles were designed using the
same convergent nozzle geometry.

We concentrated on a baseline nozzle for shock free

flow with Me = 1.5. We obtained acoustic data for this

nozzle. Figure 6 illustrates Mach contours for the fore-

petal nozzle with E = 0.7 and 60 = 0.2. Here there are

two meridional planes of flow symmetry- _p = 0 ° ant

45 °. They are limited by the axis of symmetry, noz-
zle boundary and inviscid jet boundary from the nozzle

throat at x = 0, to the end of the fourth barrel at

x = 10. Additional pictures of five cross sections c f

Mach contours are also presented. They help to see

the jet shape and flow structure. These cross sections

are located at the nozzle throat (z = 0), two at ir-
ternal nozzle cross sections, x2=l and x3=2.5, close t_

the nozzle exit, x4=4 and at the end of the compute]

interval xs= 10.

Apparently, the round shape deforms to a round-

rectangular shape and later downstream takes a shape

similar to petals or a flower: a round part transforms

to rectangular, and rectangular to almost triangular.

The petals become sharper, which promotes more ir-

tensive whirlwind formation and more effective mixing
with ambient air. This also confirms the observation c.f

the pressure contours and velocity maps.

The formation of the whirlwind inside corrugations

is distinctly illustrated in Figure 7. Here Mach contours

are shown for an eight-petal nozzle with e = 0.35, /50 :=

0.2, np= nc = 8. The favorable conditions for whir-
wind formation appear at once after the throat.

Figure 8 shows development of cross section pres-

sure contours, and jet shape in the planes of symm(-

try for a nozzle pressure ratio NPR=17. For undere_-
pended jets such mixing intensification increases, whica

is expected. The flow through the "gaps" between petas
penetrates into ambient air forming shapes like that (,f
an ear and at the nozzle exit, x4 = 4 the cross sectio,

has a butterfly shape with whirlwind flow into its wing,_.

The closed pressure contours show existence of vortic_ 1
flow. Near the end of the first barrel, the cross sectio l

transforms to an X-shape.

More detailed pictures of Mach contours for this

case are shown in Figures 9a and 9b, where 2D plots



arepresentedfor twoplanesof symmetry qa = 0 and

= 45 °. A velocity map in the cross section, x4 = 4,

for the case shown in Figure 6 is illustrated in Figure 10.

The whirlwind flow is observed very well; gas follows

from the nozzle interior to a concave part of the wall
surface.

Unfortunately, we could not simulate 3D mixing

layers effectively and observe formation, development
and destabilization of the vorticities starting from the

nozzle exit and moving downstream in the jet exhaust.

For this we need to use a large-eddy simulation (LES)

approach with correspondent codes, however, even for

2D problems such computational work is very expen-
sive.

The main numerical results concerning thrust op-

timization are represented in Figure 11, which show the
ratio of the Bluebell nozzle-first embodiment relative to

the baseline nozzle thrust, Tn/To, vs nozzle geometric

parameters. All comparisons are performed for exhaust
Mach number Me = 1.5. There are several curves that

illustrate the contribution of different nozzle geometric
factors to the thrust: viscous effects, petals and corru-

gations. The parametric intervals used are limited by
restrictions in the numerical scheme following from the

condition Mx > 1. The dependence of the thrust on

the corrugation coefficient and frequency is found to be

more significant than from petal values. The influence

of the petal length (¢) is nonmonotonic; for small val-

ues 6o < 0.025 the thrust reduces with _ increasing,
but increases with c, when 60 > 0.025 and _ < Era.

These curves represent the maximum values achieved

by the Bluebell nozzle geometry. Several factors influ-
ence the behavior of these curves. The first occurs from

increase of the nozzle length with corresponding "ef-

fective" Mach number increase at the exit. Of course,
for the case _ > 0 the term "exit" is a conditional un-

derstanding and Mach number can change significantly

along the exit lip line. On the one hand a lateral flow
reduces a pressure at the wall, but on the other hand

it reduces the "effective" boundary layer thickness 6*.

The flow expands into the nozzle's channels and this

creates additional thrust by hydrodynamic pressure on
the "lateral sides" of such channels. This conclusion

is confirmed by Figure 12, where pressure distributions

are shown along the wall in the several cross sections
for cases described above.

Another dependence observed for the Blubell nozzle-
second embodiment is presented in Figure 13. The

thrust ratios are similar to those observed for the pre-
vious case. There is some thrust loss from the friction

of the gas flow from the almost horizontal additional
sheet with petals. However, this thrust loss is insignif-
icant and does not exceeded 1 - 2_,. This is much less

than thrust losses encountered for nozzles described in

[2, 13] that suppress noise.

The general conclusion obtained from the numer-

ical simulation is that there is an optimum set of ge-

ometric parameters, which provide a maximum thrust

exceeding the usual round nozzle thrust. The influence

of such nozzle shape variation on jet noise is examined
below.

3. ACOUSTIC DATA.

3.1. Experimental approach. The Bluebell nozzle

design takes into account all theoretical and numerical
understanding discussed above. Nine different nozzles

were made including the baseline round nozzle. The

list of these nozzles assigned by numbers #1 thru #9

is represented in Table 1, along with their geometric

parameters n = np = nc,c,6o. In Table 1, nozzle #7 is
the round convergent baseline nozzle and nozzle #9 is

the round convergent-divergent baseline nozzle. Four of

them are shown in Figure 14.

Table 1

N 1 2 3 4 5 6 7 8 9

n 8 8 8 8 4 4 0 8 0

0.23 0.23 0.38 0.15 0.45 0.45 0 0.23 0

60 0.20 0.00 0.00 0.00 0.20 0.00 0 0.10 0

All nozzles have a throat radius r, =0.6373in. The

round nozzle has the exit radius r e-°- 0.6943in. The

Bluebell nozzles have exit radii defined by equation (1.2b).

The length of the convergent part of all nozzles is x,=

2.053in, and the entire length of the baseline round noz-

zle is x°=4.25in. All Bluebell nozzles are made on the
base of the second embodiment, with use of the addi-

tional sheets. Their lengths are varied from the baseline

nozzle by an additional 1.0 to 1.1 inches depending on

the geometrical parameters selected for the nozzle.

The experiments were conducted in the small Ane-

choic Jet Noise Facility (SAJF) at the NASA Langley

Research Center. Figure 15 shows part of this facil-

ity with Bluebell nozzle #1. The interior dimensions of

the facility within the wedge tips are 10× 13×8ft high.
The anechoic treatment absorbs at least 997, of incident

sound at frequencies greater than 150Hz. The air sys-

tem provides a supply of continuous dry unheated or

electrically heated air at mass flow rates of 21b/s and

maximum stagnation pressure of 150 psia. Nozzle pres-

sure ratios (NPR-po/poo) are controled electronically
within 0.3_,. The nozzles are fastened at the end of

a 2.500-in straight diameter pipe section that extends

24in. The upstream end of this pipe is connected with a

contoured transition section to a 3" diameter pipe sec-

tion which contains a flow straightner. Air is supplied



throughthispipesystemto thenozzle,andcanreach
temperaturesof 1000°F.

Three1/4in-dia.microphoneswerelocatedalong
thewall.Thesketchofthelocationofthemicrophones
andnozzle-jetsystemisshowninFigure16.All dimen-
sionalvaluesarepresentedformicrophonelocationsin
thefigure.Thedatafromthesemicrophoneswaslow
passedfilteredat 100kI2I_z,amplifiedanddigitizedbefore
beingsentto thecomputerforstorageandanalysis.

1.3.2. Experimental results. All nozzlesshownin
Table1 weretestedat bothsupersonicandsubsonic
conditions.In thesupersonicregimethenozzleswere
operatedslightlyunderexpandedat thenozzlepressure
ratioNPR--4.0andjet total temperatureTj = 350°F.

This corresponds to a fully expanded jet Mach num-

ber of 1.56 with corresponding exit velocity of 1740

ft./sec. All nozzles, except convergent nozzle 7, were

designed for a fully expanded Mach number M, = 1.5.
The underexpanded condition was selected because it

was expected that the nozzles with corrugations would

reduce noise more effectively at this condition. In the
subsonic regime the nozzles were operated at the nozzle

pressure ratio NPR=l.27 and jet total temperature of

538°F This corresponds to an exhaust Mach number

Me = 0.6 with corresponding exit velocity 900 ft./sec.

At either supersonic or subsonic nozzle operating con-
ditions the nozzles were sized to operate at the same
ideal thrust.

Due to the small size of the nozzles of Table 1, it is

not possible to display acoustic data in terms of the per-

cieved noise level (PNL) metric. Instead we shall show
comparative results in terms of the measured overall

sound pressure level and then show comparative nar-

row band spectra of those nozzles of most interest.

Figures 17a and 17b show the overall sound pres-
sure level results for all nozzles. Figure 17a compares

results at the supersonic condition and Figure 17b those

at the subsonic condition. In the supersonic regime
the overall levels are shown as differences relative to

that measured from the baseline convergent-divergent

nozzle with design exhaust Mach number of 1.5. In

the subsonic regime the reference nozzle is the base-

line convergent nozzle. In both the supersonic and sub-

sonic regimes, the reference nozzles produced maximum

sound radiation at the angle @ = 145 ° . Figure 17a
shows that all nozzle concepts produced varying lev-

els of noise reduction at the peak radiation angle, and
even at • = 91.1 °. The noise reduction at • = 125.7 °

was the least, even indicating levels above the baseline

nozzle. In all cases those nozzles with corrugations dis-

played the best acoustic performance (i.e. nozzles 1,5

and 8). Also increasing the nozzle perimeter leads to

improved levels of noise reduction.

Figure 17b indicates that most nozzle configura-

tions actually produced more noise than the baseline

convergent nozzle. The only one showing some promise

is nozzle 1. The results shown in Figure 17a and l?b

are not surprising. In the supersonic regime, noise is

heavily driven by Mach wave emission, where it is ge _-

erally a good practice to select a suppression concept
that enhances mixing. However, we now have obserw.d

the following anomalous behavior, nozzle 1 works w,.ll

in both flow regimes. Thus it is important that we show

details of the narrow band spectra for this nozzle to s,_e
where the noise reduction occurs.

Figures 18a, 18b, and 18c show respectively narrcw
band spectra for angles @ = 91.1 °, 125.7 °, and 145 ° ,.o

the nozzle inlet. These spectra are acquired at the s_l-

personic condition. All spectra were computed fron

digitized time records using a 2K FFT, which provid,_s

a spectral resolution of 100 Hz. From Figure 18a oI_e
clearly can observe the presence of screech and broad-
band shock noise in the reference nozzle 9. This is ex-

pected due to operation at the slightly underexpanded
condition. Note, however, that Bluebell nozzle 1 h;Ls

significantly reduced shock noise, but it is difficult lo

determine if the high frequency range contains shock

noise above 20 kHz. for this nozzle. The Figure l_;c

spectrum shows that the noise reduction achieved in tt_e

peak radiation direction occurs over the entire spectr.d

range.

Figures 19a and 19b show respectively narrow band

spectra for angles • = 91.1 ° , 125.7 ° , and 145 ° to tte

nozzle inlet axis. These spectra are acquired at the sub-

sonic condition, and comparison is made to the conve'-

gent-divergent nozzle used in the previous figure, sime

it is nearly equivalent to that of the convergent nozzl _.

Even though Figure 17b shows a reduction in OASPL

for Bluebell nozzle 1 in the subsonic regime, these spe,:-
tra indicate that noise reduction would not be evident

in the PNL metric. This is due to the cross-over in

the spectra beyond 5kHz. Thus the anomalous beha"-

ior of Bluebell nozzle 1 is now explained, this nozz e

enhances mixing in the subsonic range but actually in-
creases noise in the PNL metric.

II. DISCUSSION AND CONCLUSIONS

In this paper we have examined both the thrust and

noise performance of several round axisymmetric no:'-

zles designed with chevrons and corrugations, and have

made comparisons to reference baseline convergent- di-

vergent Me = 1.5 and convergent nozzles. All no'.'-
zles with chevrons and corrugations were designed _s

convergent-divergent nozzles with exhaust Math num-

ber Me = 1.5. The thrust calculations were performed

using the Krayko-Godunov numerical scheme (Euler ba-

sed) both with and without boundary layer correction.

Additional thrust calculations were performed using a



full Navier-Stokescodewith k-cturbulencemodelfor
selectcases.

Thethrustcalculationsfor thesupersonicregime
demonstratedthat Bluebellnozzle5,with6o = 0.2 and

= 0.45 (i.e. curve 2 in Figure 11), actually has aug-

mented thrust in the range of 17,. The noise data for

this nozzle (i.e. Figure 17a) exhibits a reduction of noise

of nearly 4 dB. The thrust calculations also indicated

that even better aeroperformance could be obtained at

greater values of the corrugation amplitude 60 and also
with increase in nozzle perimeter, as reflected through

the parameter _. The noise results also showed that in-

creased suppression is obtained with increasing values of

60 and c. Unfortunately, we have not constructed such a

model nozzle, nor have we as yet predicted or measured
the turbulent flow field to further confirm these results.

This is being addressed at this time. The thrust cal-

culations also revealed that standard methods usually

applied to account for boundary iayeI_ thickness with
an Euler solver provide misleading results. The Navier-

Stokes simulations have shown better agreement with

the Euler code without boundary layer correction.

The subsonic acoustic results were disappointing,

yet not entirely unexpected. They demonstrate what

we have known for a long time. Noise reduction is very
difficult to achieve at low exhaust velocities. At high

velocities noise reduction is simply achieved through

enhanced mixing, although, in general, it comes as a

trade-off with aeroperformance. Thus the Bluebell noz-
zle without ejector is an exception. With an ejector one

expects even better aeroperformance and noise suppres-

sion from the Bluebell nozzle, and it may even be pos-

sible to achieve this in the subsonic regime. As stated

in the introduction, one needs to investigate the tur-

bulent acoustic source to properly optimize the nozzle

geometry, particularly in the subsonic regime.
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a)
e

Fig.1 The Bluebell nozzle on the base of convergent-divergent round designed nozzle.

a) x,y,z-Cartesian and x, r,_- cylindrical coordinates; x = 0-an inlet,x.- a throat, xc- a start of the sinusoidal

cross section variation, x_-a baseline nozzle edge, xe-a Bluebell nozzle edge, e-a petal amplitude coefficient.

b) a cross section nozzle contour, ro=Ro(z)- an "equivalent" round nozzle radius, r±-maximum and minimum
radius values, 6= 1_(r+ -- r_)- a corrugation amplitude coefficient, r(_)-a cross section nozzle contour.
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Fig.2 The ratio of the edge lip line lengths (a) and the lateral areas (b) of Bluebell (subscript index "n")

and baseline (subscript index "o") nozzles vs the petal amplitude coefficient c for the different values of the

corrugation amplitude coefficient 60 and variation frequencies np = nc = 4 and 8. The numbers at the curves

1,2,3 are: 1 -6°=0, 2 -60=0.25, 3 -60=0.5.
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b)

Fig.3 Two different Bluebell nozzle embodiments: a) - the petal middle line always locates at the exit round
nozzle cross section; b) - with petals formed by an additional sheet to the baseline round nozzle and a minimzl

distance to the nozzle edge always larger than the round nozzle length.

Z M6 M8

=K-I A

R((p) M. B

k=l

X i

a) b) x.
I+1

Fig.4 Some elements oi the grid for the marching Krayko-Godunov numerical scheme, a) - the grid in the
cross section z = zi; b) - the neighbor six-side cells in the cylindrical coordinate system.
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Fig.5 The comparison of the numerical and exact solutions for a supersonic flow with Mo_=3 into 2D

wedge-shaped inlet with the wedge angle a = 5°; X-direction is along the wedge, Y-direction is perpendicular
to X-direction; Y.= Y value at nozzle throat. The nondimensional step in Y-direction hy=0.01, a) Math

contours; b)' pressure distribution along the plane of symmetry: 1-exact solution, 2- numerical solution; e)

Mach contours (the same as in a)); d) pressure distribution along the wall: 3-exact solution; 4-numerical

solution.
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Fig.6 Machcontoursin theplanesof symmetryandin fivecrosssectionsfor a flowinto4-petalBluebell
nozzlewith np= nc = 4, c = 0.7, 6o = 0.2 and into exhaust jet with pressure ratio NPR=3.684 (M, = 1.5);

z ° = 3.27. a) 3D picture. More detail 2D pictures for five cross sections are in the b) to f). The cross section

locations are: b) (1) x=0, c) (2)-x=l, d) (3)-x=2.5, e) (4)-x=4, f) (5)-x=10.
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Fig.7Thesameasin Fig.6,butfor 8-petalBluebellnozzlewith np= nc = 8, s = 0.35, _50= 0.2
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Fig.8Thesameasin Fig.6,but for 4-petalBluebellnozzlewith np = nc = 4, s = 0.35, 50 = 0.2 and
underexpanded jet with pressure ratio NPR=17 (M_=2.5).
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Fig.9Machcontoursin twoplanesofsymmetryshownin Fig.8,(a-T= 0°, b-_o = 45°).
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7
Fig.10 Velocity map in the cross section x=4 for Blue-

bell nozzle with geometric parameters: n -- np= nc =

4, e = 0.7, 6o = 0.2; NPR=3.684.
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Fig. 12 The Bluebell nozzle 1st embodiment, n=4. Un-
derexpanded jet with Me=2.5. Pressure distribution

vs an azimuth angle ¢ for the different cross sections,

c=0.35, 60=0.2; l-x=0, 2-1, 3-2.5, 4-4.
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Fig.ll The Bluebell nozzle 1st embodiment, n=4. De-

pendence of the thrust ratio T,_/To from geometric pa-
rameters ¢ and 60. Tn-the Bluebell nozzle thrust, T0-the
baseline round nozzle thrust. Inviscid Euler approxi-

mation: 1- 60=0.3, 2-0.2, 3-0.1, 4-0; with the bound-

ary layer corrections: 5-60=0.1, 6-0. NSE solution by
CRAFT code: circle-60=0.2, square-60=0.
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Fig.13 The Bluebell nozzle 2nd embodiment, n=4. De-
pendence of the thrust ratio T,_/To from geometric pa-

rameters c and 60 with taking into account the bound-

ary layer corrections: 1-60=0.3, 2-0.2, 3-0.1, 4-0.
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Fig.14TheBluebellandbaselineround nozzles, which were tested in the Small Anechoic Jet Facility (SAJF)
at NASA Langley Reserch Center. From left to right are #9,#1,#8 and #5 nozzles.

Fig.15 Existing 8-petals Bluebell nozzle mounted in the SAJF.
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Fig.16 The sketch of the mutual location of the microphones and the nozzle-jet system.
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Fig.17a The supersonic condition. The overall pressure level differences of the Bluebell nozzles relative to that
measured from the baseline round convergent-divergent nozzle with design exhaust Mach number M, = 1.5.

These values are presented vs a sound radiation angle _.
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Fig.17b The subsonic condition. The overall pressure level differences of the Bluebell nozzles relative to that

measured from the baseline round convergent nozzle. These values are presented vs a sound radiation angle
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Fig.18 The supersonic condition. The acoustic power
spectral density vs frequency determined by three micr-
phones: a) microphone 1 (_1 = 91-1°), b) microphone
2 (_2 = 125.7°), and e) microphone 3 (_3 = 145°)-
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Fig.19 The subsonic condition. The acoustic power
spectral density vs frequency determined by three micr-
phones: a) microphone 1 (_1 = 91.1°), b) microphone
2 (_2 = 125.7°), and c) microphone 3 (g/3 = 145°) •
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